<delect id="u20cw"><s id="u20cw"></s></delect>
<rt id="u20cw"><code id="u20cw"></code></rt>
<center id="u20cw"></center>
  • <center id="u20cw"></center><center id="u20cw"><dd id="u20cw"></dd></center>
  • <dd id="u20cw"></dd>

    您好:北京泰茂科技股份有限公司

    歡迎來到泰茂醫(yī)療器械招標網(wǎng)

    Acad Emerg Med:大數(shù)據(jù)模型可改善對住院患者的預后預測
    發(fā)布時間:2016/02/23 信息來源:查看

    Acad Emerg Med:大數(shù)據(jù)模型可改善對住院患者的預后預測

    2016年2月22日 訊 /生物谷BIOON/ --在美國有超過一半的院內死亡都與嚴重感染或敗血癥直接相關,近日來自耶魯大學等機構的研究者開發(fā)了一種預測模型,其可以利用當?shù)夭∪说拇髷?shù)據(jù),并且利用機器學習方法來幫助鑒別那些有疾病風險的患者,這種新型方法比當前的臨床實踐方法要好,該研究發(fā)表在國際雜志Academic Emergency Medicine上。

    當前急診醫(yī)生可以利用簡單的計算器或評分系統(tǒng)來作為臨床的決策準則幫助確定哪些患者更易因院內敗血癥而死亡,然而這些方法常常并不能成功鑒別出高風險的病人,因為這僅僅是基于有限的信息,而這并不能夠計算出數(shù)據(jù)的復雜性,其僅僅是利用不同病人群體而開發(fā)出的。

    本文中,科學家開發(fā)的這種新型模型就利用了來自當?shù)夭∪说碾娮咏】涤涗浀拇罅繑?shù)據(jù),這種名為“隨機森林模型”的方法就可以對來自病人的數(shù)據(jù)進行處理分析并且做出一定的預測;這種新型的大數(shù)據(jù)分析方法遠勝于當前的模型,而且可以潛在地在每5000份嚴重的敗血癥患者中進行分類出200-300名患者。

    R. Andrew Taylor博士指出,利用機器學習技術并且結合大量的突變(超過500個突變),我們就可以開發(fā)出一種新型模型來潛在幫助更好地預測院內患者的敗血癥死亡率。研究人員希望后期在促進這種大數(shù)據(jù)分析模型使用的時候,同時還可以幫助對患者進行實時地監(jiān)測,研究者的目的就是獲取患者的數(shù)據(jù),并且開發(fā)出新型的學習健康系統(tǒng),即開發(fā)出預測性的模型來應用于改善患者的健康之中。(生物谷Bioon.com)

    doi:10.1111/acem.12876
    PMC:
    PMID:

    Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data–Driven, Machine Learning Approach

    R. Andrew Taylor MD, MHS*, Joseph R. Pare MD, Arjun K. Venkatesh MD, MBA, MHS, Hani Mowafi MD, MPH, Edward R. Melnick MD, MHS, William Fleischman MD andM. Kennedy Hall MD, MHS?

    ?

    Objectives Predictive analytics in emergency care has mostly been limited to the use of clinical decision rules (CDRs) in the form of simple heuristics and scoring systems. In the development of CDRs, limitations in analytic methods and concerns with usability have generally constrained models to a preselected small set of variables judged to be clinically relevant and to rules that are easily calculated. Furthermore, CDRs frequently suffer from questions of generalizability, take years to develop, and lack the ability to be updated as new information becomes available. Newer analytic and machine learning techniques capable of harnessing the large number of variables that are already available through electronic health records (EHRs) may better predict patient outcomes and facilitate automation and deployment within clinical decision support systems. In this proof-of-concept study, a local, big data–driven, machine learning approach is compared to existing CDRs and traditional analytic methods using the prediction of sepsis in-hospital mortality as the use case. Methods This was a retrospective study of adult ED visits admitted to the hospital meeting criteria for sepsis from October 2013 to October 2014. Sepsis was defined as meeting criteria for systemic inflammatory response syndrome with an infectious admitting diagnosis in the ED. ED visits were randomly partitioned into an 80%/20% split for training and validation. A random forest model (machine learning approach) was constructed using over 500 clinical variables from data available within the EHRs of four hospitals to predict in-hospital mortality. The machine learning prediction model was then compared to a classification and regression tree (CART) model, logistic regression model, and previously developed prediction tools on the validation data set using area under the receiver operating characteristic curve (AUC) and chi-square statistics. Results There were 5,278 visits among 4,676 unique patients who met criteria for sepsis. Of the 4,222 patients in the training group, 210 (5.0%) died during hospitalization, and of the 1,056 patients in the validation group, 50 (4.7%) died during hospitalization. The AUCs with 95% confidence intervals (CIs) for the different models were as follows: random forest model, 0.86 (95% CI = 0.82 to 0.90); CART model, 0.69 (95% CI = 0.62 to 0.77); logistic regression model, 0.76 (95% CI = 0.69 to 0.82); CURB-65, 0.73 (95% CI = 0.67 to 0.80); MEDS, 0.71 (95% CI = 0.63 to 0.77); and mREMS, 0.72 (95% CI = 0.65 to 0.79). The random forest model AUC was statistically different from all other models (p ≤ 0.003 for all comparisons). Conclusions In this proof-of-concept study, a local big data–driven, machine learning approach outperformed existing CDRs as well as traditional analytic techniques for predicting in-hospital mortality of ED patients with sepsis. Future research should prospectively evaluate the effectiveness of this approach and whether it translates into improved clinical outcomes for high-risk sepsis patients. The methods developed serve as an example of a new model for predictive analytics in emergency care that can be automated, applied to other clinical outcomes of interest, and deployed in EHRs to enable locally relevant clinical predictions.


    電信與信息服務業(yè)務經營許可證編號:京ICP證140722號 藥品醫(yī)療器械網(wǎng)絡信息服務備案(京)網(wǎng)藥械信息備字(2023)第00464號網(wǎng)絡備案:京ICP備12039121號-1
    地址:北京市海淀區(qū)學清路9號匯智大廈B座7層 www.brewburghusa.net ?2017-2025 泰茂股份版權所有
    免费香蕉依人在线视频一香蕉,亚洲精品亚洲人成在线下载,开心婷婷五月综合在线基地,日韩欧美亚洲色图中文字幕 国产精品精品一二三 国产人碰人摸人爱视频日日
    <delect id="u20cw"><s id="u20cw"></s></delect>
    <rt id="u20cw"><code id="u20cw"></code></rt>
    <center id="u20cw"></center>
  • <center id="u20cw"></center><center id="u20cw"><dd id="u20cw"></dd></center>
  • <dd id="u20cw"></dd>